WDM CWDM DWDM

WDM, DWDM & CWDM devices and modules are the key passive component and networking elements for intelligent optical networks and transparent broadband transmission based on the new infrastructure of IP over WDM. Low IL, High Channel isolation, epoxy-free in optical path, Telcordia compliant.

WDM(wavelength-division multiplexing) is a technology which multiplexes a number of optical carrier signals onto a single optical fiber by using different wavelengths (i.e colours) of laser light. This technique enables bidirectional communications over one strand of fiber, as well as multiplication of capacity.The term wavelength-division multiplexing is commonly applied to an optical carrier (which is typically described by its wavelength), whereas frequency-division multiplexing typically applies to a radio carrier (which is more often described by frequency). Since wavelength and frequency are tied together through a simple directly inverse relationship, the two terms actually describe the same concept.

Coarse wavelength division multiplexing (CWDM) is a method of combining multiple signals on laser beams at various wavelengths for transmission along fiber optic cables, such that the number of channels is fewer than in dense wavelength

CWDM systems have channels at wavelengths spaced 20 nanometers (nm) apart, compared with 0.4 nm spacing for DWDM. This allows the use of low-cost, uncooled lasers for CWDM. In a typical CWDM system, laser emissions occur on eight channels at eight defined wavelengths: 1610 nm, 1590 nm, 1570 nm, 1550 nm, 1530 nm, 1510 nm, 1490 nm, and 1470 nm. But up to 18 different channels are allowed, with wavelengths ranging down to 1270 nm.

The energy from the lasers in a CWDM system is spread out over a larger range of wavelengths than is the energy from the lasers in a DWDM system. The tolerance (extent of wavelength imprecision or variability) in a CWDM laser is up to ± 3 nm, whereas in a DWDM laser the tolerance is much tighter. Because of the use of lasers with lower precision, a CWDM system is less expensive and consumes less power than a DWDM system. However, the maximum realizable distance between nodes is smaller with CWDM.

Dense wavelength division multiplexing (DWDM) is a technology that puts data from different sources together on an optical fiber, with each signal carried at the same time on its own separate light wavelength. Using DWDM, up to 80 (and theoretically more) separate wavelengths or channels of data can be multiplexed into a lightstream transmitted on a single optical fiber. Each channel carries a time division multiplexed signal. In a system with each channel carrying 2.5 Gbps (billion bits per second), up to 200 billion bits can be delivered a second by the optical fiber. DWDM is also sometimes called wave division multiplexing (WDM).

Since each channel is demultiplexed at the end of the transmission back into the original source, different data formats being transmitted at different data rates can be transmitted together. Specifically, Internet (IP) data, Synchronous Optical Network data (SONET), and asynchronous transfer mode (ATM) data can all be travelling at the same time within the optical fiber.

DWDM promises to solve the “fiber exhaust” problem and is expected to be the central technology in the all-optical networks of the future.

error: Content is protected !!